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The probability distribution of the phase @ =2¢n — ¢n_x—¢n+x is found in P1. It is shown that for
strong |Eyl, |En +xl, |En-1| @and weak |Ey]| structure factors, @ is distributed around 7.

1. Introduction

As is well known (Woolfson, 1961; Schenk & de
Jong, 1973), from the Harker-Kasper inequalities for
PI,

(Uh+ U < (14 Upsi) 1+ Up_y),

(Un—Uw)* < (1 =Upsi) (1 = Up—y). 1

When [Ul, |Uy+xl, |Un_yl are sufficiently large and
U, =0 then

Ui> (1= Upsul) A= |Un_xD),

and it follows that the sign relation S(h+ k)~ — S(h—k)
must hold. Giacovazzo (1974a) has worked out a
probability density function for this relationship by
the mathematical device of the joint probability distri-
bution.

In a recent short communication Schenk (1973), by
a geometrical interpretation of the Harker-Kasper
inequalities, suggested for non-centrosymmetric struc-
tures the relationship

Pnikt On-x—2pn>7 )]

for strong structure factors h, h+k, h—k and
weak k. This relationship can be derived from the
Karle-Hauptman determinant,*

1 Un Uy Un+x
U, 1 U_psx Ux |20,
U_x Up_x 1 Un
Uipewe Uy U, 1

Making U, =0 gives

1 =2|Up > = | Up 4 l* = | Un—k >+ Up|*+ 1 Up 4 12| Un - el
—2|Up|Up 41l [ Un—klcos 2pn—@n—k—¢n+1) =0.

If the U’s are sufficiently large then the cosine term
must be negative and relationship (2) is therefore
justified.

The aim of this paper is to determine the probability
law for (2) for space group P1 by means of the joint
probability distribution.

* Referee’s suggestion.

2, Preliminary formulae

For convenience a number of formulae occurring in the
theory of Bessel functions, which are used in the
analysis, are given below. From Watson (1948) the
following integral formulae can be found.

l—; § exp (—iz cos @) cos mopdp =J,(2) , 3)

<0

s exp (—iz cos @) sin mp=0, @
vo
e am
ex - t2 Jm ttm+1dt= Seo—— —
. exp (=prntar) o

xexp (—a’/4p) . (5)

where J,,(z) is the Bessel function of the first kind of
order m. Also used are the relations obtained from (5)
by successive differentiation of both sides with respect
to p.

3. The joint probability distribution P(R,,, Ry, Ry,
Riitxs Ons Qus On—xs Pr+x)

We introduce the abbreviation E;=R; exp ip,=FE,;
E,=R,expip,=Ey; E3;=R;expip;=Ey_y; 4=
R, exp ipy=FEy, .. By generalizing Klug’s (1958)
mathematical terminology, we derive the characteristic
function (Giacovazzo, 1974b)
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where u;,v;, i=1,...,4 are carrying variables asso-
ciated respectively with 4; and B; values (E;=4;+iB;),
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and
KPS. ce W
2 2 /2 *
Koo, K%, K37,

Ars...w =

K.s. .., are the cumulants of the distribution.

The probability distribution function is found by
taking the Fourier transform of (6): after two variable
changes in (6),

ui=\2u;, v;=\|2v; i=1,...,4,
and

U;=Q; Cos Y;; v;=g; sin y;; A;=R, cos @1
B,‘:Ri sin @i, i=1, .. .,4,
we obtain

PR, ... RiR,RsR,

2n)®

7R4;¢1,' . ~9(04)=

oo oo p2n 2

xS S S S exp { —i[)/20,R; cos (w;—¢,)
0 0 JO 0

+ ...+ V204R, cos (y,—

+g§+...+g§)]24.{1 +

94} exp [—3(ot
1 1

N Si+ - v S,

2N3 S+ }910293Q4d01 ...desdyy. . .dy,, (7)

where

A’fs...w_(~)r+s+,,,+w
“we=y PlStw

Si=N

r+s+...

+(; cos w ) (e, cos y,)°. .

(04 sin yy)¥.

Calculation for P1 of the standardized cumulants
Ars...w gives the following expressions:

S, i3
NE T V2N [010205 cos (w1 —v,—w3)
] + 010204 €08 (W1 + v —w,)] ,

7z = 7 {—alel+ai+ai+ed)
+ 4030304 COS 2y, cos (W3 + wy)
+ 030304 €OS 2y, cos (W3 — )]
+3{olos04 sin 2y, sin (w3+y,)
— 030304 Sin 2y, sin (w3 — w,)]} -
The integral contribution of S3/N*? in (7) is

24 i3
= " _RR,R:R
Que yon U
) co p2m 2n
xS S Q S exp {—i)2
o o Jo o
x[@1Ry cos (W — @)+ .. .04Rs cOs (Ws— a)]}
xexp [—3(ei+ ... +03)]0:020:04
%[010:03 €Os (W1 — W2 —y3)
+010:04 €0s (y; + ¥, — yy)ldede,. . . dy,,

which equals, after the application of the equations (3),
(4) and (5) (Karle & Hauptman, 1958)

2
4VN
X €08 (91— @2—¢3) + RiR,R; oS (¢, + 02— 4)} .

R,R,R3R, exp (—R2— ... — R?) {R,R,R,

The integral contribution of S;%/2N? in (7) equals
_ RRRR, 2% [p= s
e |, e i

X 01030304de; . . .do,

A

2n 2n
xSo ... So exp —i[/2¢,R, cos (w1—@)+. ..

+ V/204R, cos (y4—
xdy,..

9a)] cos? (w1 —y,—y3)
.dy,+anag.

| exp -3+ +cd)
x 0}030305do; . . .dos
2r 2n .
X So So exp —i[}/20,R, cos (Wy—p)+ ...

+1/204R, cos (ws—

+2S:...

9a)] cos (w1 —y,—~y3)

xcos (W, +y,—yady,. . -dw}-

After some calculation, this expression becomes
1
T Nab R(R,R3R, exp (—Ri— ... —R))

x {(1—R?) (1 - R?) (1-R3)
— RIR3R; cos (29120, —2¢3)
+(1—-R}) (1-R) (1-RY)
— R}R}R; cos (29, +2¢,— 2;04)
+2(1 —RY)R2R3R, c0s (20, — p3—04)
+2(1 = R)RSR3 R, cos 20, + 3 — ¢4)} .
After a lengthy analysis, we obtain, by repeated

application of (3), (4) and (5), the integral contribution
in (7) of S;/N?, which is

1
N7 Nad
x[—HR{+ RY)+R:+R}+ RE+ R}
—2+4 R2R3R, cos 29, cos (p3+¢y)
+ R3R3R, cos 29, cos (93— ,)
+ RiRsR, sin 20, sin (p3+ ¢4)
— RIR3R, sin 29, sin (g3 — ¢,)]

R\R,R3R, exp (—R3— ... —R))

1
= NAF R\R;R:R, exp (—R}—...—R))
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x[—3(R{+ ...+ R+ R:+ Ri+ RS+ R}
=2+ RiRsR, cos (20, — p3— 04)
+RIRyR, cos 205+ 93— ¢4)] -

Finally we obtain the desired probability distribution,
correct up to and including terms of order N ~1,

P(Ry,Ry, R3, Ry, 91,02, 03, 0)

= L RiR.R,R, exp [ R}~ R~ Ri R}

2
X {1 + 'V—]v—- [R1R2R3 COS (¢1 — Q2 _'(03)
+ RiR; R, 08 (91 + 02— 04)]
L
+ o7 [a+ RIRSRS cos (g1 — 9~ ¢3)
+ RER3R} c0s 2(p; + ¢, — 04)
+(2R3—DRIR3R, cos (2¢,— p3—ps)
+QR= DRIR:R, cos Qg+ 93— 9}
where
g=—4+3R}+3R;+ 2R3+ 2R3 —2R3R%— RZR?
— R}R;— R3R}— RiR:+ RIRZR:+ RIRZR?
—3(R{+R3+RE+RY.
The marginal probability density
P(Ry, Ry, R3, Ry, 01503, Ps)
T
= S P(RI’ RZa R3’ R4’ P15, 925 P35 ¢4)d(02
-
is easily derived from (8): we obtain, by transforming

in exponential form (Bertaut, 1960a,b; Karle, 1972),
P(Ry, Ry, Rs, Ry, 01, ©3, P4)

2
= 773 R1R2R3R4 €Xp [-R%-R%—R%—Ri

1
X eXp v {9+ QR5—1)RiR;R, cos (29, — g3 — 0a)}-

©)
From (9) the conditional probability density
P(P|Ry, Ry, Ry, R,), where @=2¢,—p3—¢,, is easily
derived: we obtain

P(P|Ry, Ry, Ry, Ry) = 5——- exp (Scos ),  (10)

where

S= ]:/ (2R2—1)R2R,R, .

We note explicitly that the relation (10) has the same
algebraic form which corresponds to the conditional
distribution of g, + @y + ¢n_y given

A= 2/ VN |EhEkEh+k|

[Hauptman, 1972, equation (6.3)]. However, unlike
A, S can be negative. If S is positive, the maximum
value of P is for &=0; for negative values of S, P
attains its greatest value when ®=r7.

There is no problem in calculating the following
functions:

P(cos @|S)=exp (S cos D)/[nl,(S) sin @], (11)
{cos B|S Y= S” cos DP(B|Ry, Ry, Ry, R)AD
=1,(S)/1(S). (12)
L(S)  I¥S)

var [cos @|S]=1—

SI(S) ~ I¥S)”

Equations (10), (11) and (12) justify, from the point of
view of the joint probability distribution, equation (2)
proposed by Schenk (1973).

The author wishes to thank Dr A. Digennaro for

helpful discussions and the referee for stimulating
comments.
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